Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
en:electronics:antenna-theory:dipole-derivation [2013/03/24 00:21]
alex
en:electronics:antenna-theory:dipole-derivation [2014/10/20 23:03]
alex
Line 146: Line 146:
  
 \begin{eqnarray*} \begin{eqnarray*}
-E_\theta &=& -j \omega ​\eta A_T \\+E_\theta &=& -j \omega A_T \\
 A_T &=& A_z \sin \theta \\ A_T &=& A_z \sin \theta \\
-E_\theta &=& \frac{-j \omega ​\eta \mu I_0 e^{-jkr}}{2\pi r k \sin \theta} \left [ \cos \left (\frac{kL}{2} \cos \theta \right ) - \cos \left( \frac{kL}{2} \right) \right ]+E_\theta &=& \frac{-j \omega \mu I_0 e^{-jkr}}{2\pi r k \sin \theta} \left [ \cos \left (\frac{kL}{2} \cos \theta \right ) - \cos \left( \frac{kL}{2} \right) \right ]
 \end{eqnarray*} \end{eqnarray*}
  
 This equation for $E_\theta$ is the general form for the theta component in spherical coordinates of the far-field E field of a dipole antenna of any length oriented along the z-axis. ​ The r component is zero due to the far-field assumption and the phi component is zero due to the electric field'​s orientation along the z-axis.  ​ This equation for $E_\theta$ is the general form for the theta component in spherical coordinates of the far-field E field of a dipole antenna of any length oriented along the z-axis. ​ The r component is zero due to the far-field assumption and the phi component is zero due to the electric field'​s orientation along the z-axis.  ​