Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
en:electronics:antenna-theory:dipole-derivation [2013/03/12 03:17]
alex
en:electronics:antenna-theory:dipole-derivation [2014/10/20 23:04] (current)
alex
Line 125: Line 125:
  
 \begin{eqnarray*} \begin{eqnarray*}
-\alpha = \frac{1}{k \sin^2 \theta} \left [ \cos \left( k \left( \frac{L}{2} - z' \right) \right) \cos(kz'​ \cos \theta) - \sin \left( k \left( \frac{L}{2} - z' \right) \right) \cos(kz' \cos \theta) \cos \theta \right ]+\alpha = \frac{1}{k \sin^2 \theta} \left [ \cos \left( k \left( \frac{L}{2} - z' \right) \right) \cos(kz'​ \cos \theta) - \sin \left( k \left( \frac{L}{2} - z' \right) \right) \sin(kz' \cos \theta) \cos \theta \right ]
 \end{eqnarray*} \end{eqnarray*}
  
Line 132: Line 132:
 \begin{eqnarray*} \begin{eqnarray*}
 A_z = \frac{\mu I_0 e^{-jkr}}{2\pi r k \sin^2 \theta} \left [ \cos \left( k \left( \frac{L}{2} - \frac{L}{2} \right) \right) \cos(k\frac{L}{2} \cos \theta) -\\ A_z = \frac{\mu I_0 e^{-jkr}}{2\pi r k \sin^2 \theta} \left [ \cos \left( k \left( \frac{L}{2} - \frac{L}{2} \right) \right) \cos(k\frac{L}{2} \cos \theta) -\\
-\sin \left( k \left( \frac{L}{2} - \frac{L}{2} \right) \right) \cos(k\frac{L}{2} \cos \theta) \cos \theta - \\+\sin \left( k \left( \frac{L}{2} - \frac{L}{2} \right) \right) \sin(k\frac{L}{2} \cos \theta) \cos \theta - \\
 \cos \left( k \left( \frac{L}{2} - 0 \right) \right) \cos(k 0 \cos \theta) +\\ \cos \left( k \left( \frac{L}{2} - 0 \right) \right) \cos(k 0 \cos \theta) +\\
-\sin \left( k \left( \frac{L}{2} - 0 \right) \right) \cos(k0 \cos \theta) \cos \theta \right ]+\sin \left( k \left( \frac{L}{2} - 0 \right) \right) \sin(k 0 \cos \theta) \cos \theta \right ]
 \end{eqnarray*} \end{eqnarray*}
  
Line 146: Line 146:
  
 \begin{eqnarray*} \begin{eqnarray*}
-E_\theta &=& -j \omega ​\eta A_T \\+E_\theta &=& -j \omega A_T \\
 A_T &=& A_z \sin \theta \\ A_T &=& A_z \sin \theta \\
-E_\theta &=& \frac{-j \omega ​\eta \mu I_0 e^{-jkr}}{2\pi r k \sin \theta} \left [ \cos \left (\frac{kL}{2} \cos \theta \right ) - \cos \left( \frac{kL}{2} \right) \right ]+E_\theta &=& \frac{-j \omega \mu I_0 e^{-jkr}}{2\pi r k \sin \theta} \left [ \cos \left (\frac{kL}{2} \cos \theta \right ) - \cos \left( \frac{kL}{2} \right) \right ]
 \end{eqnarray*} \end{eqnarray*}
  
 This equation for $E_\theta$ is the general form for the theta component in spherical coordinates of the far-field E field of a dipole antenna of any length oriented along the z-axis. ​ The r component is zero due to the far-field assumption and the phi component is zero due to the electric field'​s orientation along the z-axis.  ​ This equation for $E_\theta$ is the general form for the theta component in spherical coordinates of the far-field E field of a dipole antenna of any length oriented along the z-axis. ​ The r component is zero due to the far-field assumption and the phi component is zero due to the electric field'​s orientation along the z-axis.  ​