Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| en:electronics:antenna-theory:dipole-derivation [2013/03/12 02:17] – alex | en:electronics:antenna-theory:dipole-derivation [2014/10/20 21:04] (current) – alex | ||
|---|---|---|---|
| Line 125: | Line 125: | ||
| \begin{eqnarray*} | \begin{eqnarray*} | ||
| - | \alpha = \frac{1}{k \sin^2 \theta} \left [ \cos \left( k \left( \frac{L}{2} - z' \right) \right) \cos(kz' | + | \alpha = \frac{1}{k \sin^2 \theta} \left [ \cos \left( k \left( \frac{L}{2} - z' \right) \right) \cos(kz' |
| \end{eqnarray*} | \end{eqnarray*} | ||
| Line 132: | Line 132: | ||
| \begin{eqnarray*} | \begin{eqnarray*} | ||
| A_z = \frac{\mu I_0 e^{-jkr}}{2\pi r k \sin^2 \theta} \left [ \cos \left( k \left( \frac{L}{2} - \frac{L}{2} \right) \right) \cos(k\frac{L}{2} \cos \theta) -\\ | A_z = \frac{\mu I_0 e^{-jkr}}{2\pi r k \sin^2 \theta} \left [ \cos \left( k \left( \frac{L}{2} - \frac{L}{2} \right) \right) \cos(k\frac{L}{2} \cos \theta) -\\ | ||
| - | \sin \left( k \left( \frac{L}{2} - \frac{L}{2} \right) \right) \cos(k\frac{L}{2} \cos \theta) \cos \theta - \\ | + | \sin \left( k \left( \frac{L}{2} - \frac{L}{2} \right) \right) \sin(k\frac{L}{2} \cos \theta) \cos \theta - \\ |
| \cos \left( k \left( \frac{L}{2} - 0 \right) \right) \cos(k 0 \cos \theta) +\\ | \cos \left( k \left( \frac{L}{2} - 0 \right) \right) \cos(k 0 \cos \theta) +\\ | ||
| - | \sin \left( k \left( \frac{L}{2} - 0 \right) \right) \cos(k0 \cos \theta) \cos \theta \right ] | + | \sin \left( k \left( \frac{L}{2} - 0 \right) \right) \sin(k 0 \cos \theta) \cos \theta \right ] |
| \end{eqnarray*} | \end{eqnarray*} | ||
| Line 146: | Line 146: | ||
| \begin{eqnarray*} | \begin{eqnarray*} | ||
| - | E_\theta &=& -j \omega | + | E_\theta &=& -j \omega A_T \\ |
| A_T &=& A_z \sin \theta \\ | A_T &=& A_z \sin \theta \\ | ||
| - | E_\theta &=& \frac{-j \omega | + | E_\theta &=& \frac{-j \omega \mu I_0 e^{-jkr}}{2\pi r k \sin \theta} \left [ \cos \left (\frac{kL}{2} \cos \theta \right ) - \cos \left( \frac{kL}{2} \right) \right ] |
| \end{eqnarray*} | \end{eqnarray*} | ||
| This equation for $E_\theta$ is the general form for the theta component in spherical coordinates of the far-field E field of a dipole antenna of any length oriented along the z-axis. | This equation for $E_\theta$ is the general form for the theta component in spherical coordinates of the far-field E field of a dipole antenna of any length oriented along the z-axis. | ||