
Corundum: An Open-Source 100-Gbps NIC
Alex Forencich, Alex C. Snoeren, George Porter, George Papen

Department of Electrical and Computer Engineering
University of California, San Diego

{jforenci, snoeren, gmporter, gpapen}@eng.ucsd.edu

Abstract—Corundum is an open-source, FPGA-based proto-
typing platform for network interface development at up to 100
Gbps and beyond. The Corundum platform includes several core
features to enable real-time, high-line-rate operations including:
a high-performance datapath, 10G/25G/100G Ethernet MACs,
PCI Express gen 3, a custom PCIe DMA engine, and native
high-precision IEEE 1588 PTP timestamping. A key feature
is extensible queue management that can support over 10,000
queues coupled with extensible transmit schedulers, enabling
fine-grained hardware control of packet transmission. In con-
junction with multiple network interfaces, multiple ports per
interface, and per-port event-driven transmit scheduling, these
features enable the development of advanced network interfaces,
architectures, and protocols. The software interface to these
hardware features is a high-performance driver for the Linux
networking stack. The platform also supports scatter/gather
DMA, checksum offloading, receive flow hashing, and receive-
side scaling. Development and debugging is facilitated by a
comprehensive open-source, Python-based simulation framework
that includes the entire system from a simulation model of the
driver and PCI express interface to the Ethernet interfaces.
The power and flexibility of Corundum is demonstrated by the
implementation of a microsecond-precision time-division multiple
access (TDMA) hardware scheduler to enforce a TDMA schedule
at 100 Gbps line rate with no CPU overhead.

I. INTRODUCTION AND BACKGROUND

The network interface controller (NIC) is the gateway
through which a computer interacts with the network. The
NIC forms a bridge between the software stack and the
network, and the functions of this bridge define the network
interface. Both the functions of the network interface as well
as the implementation of those functions are evolving rapidly.
These changes have been driven by the dual requirements
of increasing line rates and NIC features that support high-
performance distributed computing and virtualization. The
increasing line rates have led to many NIC functions that must
be implemented in hardware instead of software. Concurrently,
new network functions such as precise transmission control for
multiple queues are needed to implement advanced protocols
and network architectures.

To meet the need for an open development platform for
new networking protocols and architectures at realistic line
rates, we are developing an open-source1 high-performance,
FPGA-based NIC prototyping platform. This platform, called
Corundum, is capable of operation up to at least 94 Gbps, is
fully open source and, along with its driver, can be used across
a complete network stack. The design is both portable and

1Corundum codebase: https://github.com/ucsdsysnet/corundum

compact, supporting many different devices while also leaving
ample resources available for further customization even on
smaller devices. We show that Corundum’s modular design
and extensibility permit co-optimized hardware/software solu-
tions to develop and test advanced networking applications in
a realistic setting.

A. Motivation and previous work

The motivation for the development of Corundum can be
understood by looking at how network interface features in
existing NIC designs are currently partitioned between hard-
ware and software. Hardware NIC functions fall into two main
categories. The first category consists of simple offloading
features that remove some per-packet processing from the
CPU—such as checksum/hash computation and segmentation
offloading that enables the network stack to process packets
in batches. The second category consists of features that must
be implemented in hardware on the NIC to achieve high
performance and fairness. These features include flow steering,
rate limiting, load balancing, and time stamping.

Traditionally, the hardware functions of NICs are built into
proprietary application-specific integrated circuits (ASICs).
Coupled with economies of scale, this enables high per-
formance at low cost. However, the extensibility of these
ASICs is limited and the development cycle to add new
hardware functions can be expensive and time-consuming [1].
To overcome these limitations, a variety of smart NICs and
software NICs have been developed. Smart NICs provide
powerful programmability on the NIC, generally by providing
a number of programmable processing cores and hardware
primitives. These resources can be used to offload various
application, networking, and virtualization operations from the
host. However, smart NICs do not necessarily scale well to
high line rates, and hardware features can be limited [1].

Software NICs offer the most flexibility by implementing
network functionality in software, bypassing most of the
hardware offloading features. As a result, new functions can
be developed and tested quickly, but with various trade-offs
including consuming host CPU cycles and not necessarily
supporting operation at full line rate. Additionally, because of
the inherent random interrupt-driven nature of software, the
development of networking applications that require precise
transmission control is infeasible [2]. Despite this, many
research projects [3]–[6] have implemented novel NIC func-
tions in software by either modifying the network stack or

by using kernel-bypass frameworks such as the Data Plane
Development Kit (DPDK) [7].

FPGA-based NICs combine features of ASIC-based NICs
and software NICs: they are capable of running at full-
line rate and delivering low latency and precision timing,
while having a relatively short development cycle for new
functions. High-performance, proprietary, FPGA-based NICs
have also been developed. For example, Alibaba developed
a fully custom FPGA-based RDMA-only NIC that they used
to run a hardware implementation of a precision congestion
control protocol (HPCC) [8]. Commercial products also exist,
including offerings from Exablaze [9] and Netcope [10].

Unfortunately, similar to ASIC-based NICs, commercially-
available FPGA-based NICs tend to be proprietary with basic
“black-box” functions that cannot be modified. The closed
nature of basic NIC functionality severely limits their utility
and flexibility for developing new networking applications.

Commercially-available high-performance DMA compo-
nents such as the Xilinx XDMA core and QDMA cores,
and the Atomic Rules Arkville DPDK acceleration core [11]
do not provide fully configurable hardware to control the
flow of transmit data. The Xilinx XDMA core is designed
for compute offload applications and as such provides very
limited queuing functionality and no simple method to control
transmit scheduling. The Xilinx QDMA core and Atomic
Rules Arkville DPDK acceleration core are geared towards
networking applications by supporting a small number of
queues and providing DPDK drivers. However, the number
of queues supported is small—2K queues for the XDMA
core and up to 128 queues for the Arkville core—and neither
core provides a simple method for precise control over packet
transmission.

Open-source projects such as NetFPGA [12] exist, but the
NetFPGA project only provides a toolbox for general FPGA-
based packet processing and is not specifically designed for
NIC development. Moreover, the NetFPGA NIC reference
design utilizes the propriety Xilinx XDMA core, which is not
designed for networking applications. Replacing the Xilinx
XDMA core in the reference NIC design for the NetFPGA
board with Corundum results in a much more powerful and
flexible prototyping platform.

FPGA based packet-processing solutions include Cata-
pult [13], which implements network application offloading,
and FlowBlaze [14], which implements reconfigurable match-
action engines on FPGAs. However, these platforms leave the
standard NIC functions to a separate ASIC-based NIC and
operate entirely as a “bump-in-the-wire”, providing no explicit
control over the NIC scheduler or queues.

Other projects use software implementations or partial
hardware implementations. Shoal [15] describes a network
architecture that performs cell routing with custom NICs
and fast Layer 1 electrical crosspoint switches. Shoal was
constructed in hardware, but was only evaluated with synthetic
traffic with no connection to a host. SENIC [3] describes
scalable NIC-based rate-limiting. A hardware implementation
of the scheduler was evaluated in isolation, but the system-

level evaluation was carried out in software with a custom
queuing discipline (qdisc) module. PIEO [16] describes a
flexible NIC scheduler, which was evaluated in hardware
in isolation. NDP [5] is a pull-mode transmission protocol
for datacenter applications. NDP was evaluated with DPDK
software NICs and FPGA-based switches. Loom [6] describes
an efficient NIC design, which is evaluated in software with
BESS.

The development of Corundum is distinguished from all
of these projects because it is completely open source and
can operate with a standard host network stack at practical
line rates. It provides thousands of transmit queues coupled
with extensible transmit schedulers for fine-grained control
of flows. This leads to a powerful and flexible open-source
platform for the development of networking applications that
combine both hardware and software functionalities.

II. IMPLEMENTATION

Corundum has several unique architectural features. First,
hardware queue states are stored efficiently in FPGA
block RAM, enabling support for thousands of individually-
controllable queues. These queues are associated with in-
terfaces, and each interface can have multiple ports, each
with its own independent transmit scheduler. This enables
extremely fine-grained control over packet transmission. The
scheduler module is designed to be modified or swapped
out completely to implement different transmit scheduling
schemes, including experimental schedulers. Coupled with
PTP time synchronization, this enables time-based scheduling,
including high precision TDMA.

The design of Corundum is modular and highly
parametrized. Many configuration and structural options can
be set at synthesis time by Verilog parameters, including
interface and port counts, queue counts, memory sizes, sched-
uler type, etc. These design parameters are exposed in con-
figuration registers that the driver reads to determine the
NIC configuration, enabling the same driver to support many
different boards and configurations without modification2.

The current design supports PCIe DMA components for the
Xilinx Ultrascale PCIe hard IP core interface. Support for the
PCIe TLP interface commonly used in other FPGAs is not
implemented, and is future work. This support should enable
operation on a much larger set of FPGAs.

The footprint of Corundum is rather small, leaving ample
space available for additional logic, even on relatively small
FPGAs. For example, the Corundum design for the ExaNIC
X10 [9], a dual port 10G design with a PCIe gen 3 x8 interface
and 512 bit internal datapath, consumes less than a quarter of
the logic resources available on the second smallest Kintex
Ultrascale FPGA (KU035). Table I, placed at the end of the
paper, lists the resources for several target platforms.

The rest of this section describes the implementation of
Corundum on an FPGA. First, a high-level overview of the
main functional blocks is presented. Then, details of several

2Corundum codebase: https://github.com/ucsdsysnet/corundum

Host
FPGA

InterfaceInterface
PortPort

TXCQ

RXCQ

TXQ

RXQ

EQ

Desc
fetch

PCIe HIP

DMA IF

MAC
+

PHY
SFP

DMA

TX engine

TX scheduler

RX engine

Hash

Csum

Csum

DMA

Driver

SFP

OS

App

MAC
+

PHY

..
.

..
.

AXIL M

PTP HC
Cpl

write
AXI lite
Stream
DMA
PTP

R
A

M

Scheduler ctrl

Fig. 1. Block diagram of the Corundum NIC. PCIe HIP: PCIe hard IP core; AXIL M: AXI lite master; DMA IF: DMA interface; PTP HC: PTP hardware
clock; TXQ: transmit queue manager; TXCQ: transmit completion queue manager; RXQ: receive queue manager; RXCQ: receive completion queue manager;
EQ: event queue manager; MAC + PHY: Ethernet media access controller (MAC) and physical interface layer (PHY).

of the unique architectural features and functional blocks are
discussed.

A. High-level overview

A block diagram of the Corundum NIC is shown in
Fig. 1. At a high level, the NIC consists of 3 main nested
modules. The top-level module primarily contains support
and interfacing components. These components include the
PCI express hard IP core and DMA interface, the PTP
hardware clock, and Ethernet interface components including
MACs, PHYs, and associated serializers. The top-level module
also includes one or more interface module instances.
Each interface module corresponds to an operating-system-
level network interface (e.g. eth0). Each interface module
contains the queue management logic as well as descriptor
and completion handling logic. The queue management logic
maintains the queue state for all of the NIC queues—transmit,
transmit completion, receive, receive completion, and event
queues. Each interface module also contains one or more
port module instances. Each port module provides an AXI
stream interface to a MAC and contains a transmit scheduler,
transmit and receive engines, transmit and receive datapaths,
and a scratchpad RAM for temporarily storing incoming and
outgoing packets during DMA operations.

For each port, the transmit scheduler in the port module
decides which queues are designated for transmission. The
transmit scheduler generates commands for the transmit en-
gine, which coordinates operations on the transmit datapath.
The scheduler module is a flexible functional block that can be
modified or replaced to support arbitrary schedules, which may
be event driven. The default implementation of the scheduler
is simple round robin. All ports associated with the same
interface module share the same set of transmit queues and
appear as a single, unified interface to the operating system.
This enables flows to be migrated between ports or load-

balanced across multiple ports by changing only the transmit
scheduler settings without affecting the rest of the network
stack. This dynamic, scheduler-defined mapping of queues to
ports is a unique feature of Corundum that can enable research
into new protocols and network architectures, including par-
allel networks such as P-FatTree [17] and optically-switched
networks such as RotorNet [18] and Opera [19].

In the receive direction, incoming packets pass through a
flow hash module to determine the target receive queue and
generate commands for the receive engine, which coordinates
operations on the receive datapath. Because all ports in the
same interface module share the same set of receive queues,
incoming flows on different ports are merged together into
the same set of queues. It is also possible to add customized
modules to the NIC to pre-process and filter incoming packets
before they traverse the PCIe bus.

The components on the NIC are interconnected with several
different interfaces including AXI lite, AXI stream, and a
custom segmented memory interface for DMA operations,
which will be discussed later. AXI lite is used for the control
path from the driver to the NIC. It is used to initialize
and configure the NIC components and to control the queue
pointers during transmit and receive operations. AXI stream
interfaces are used for transferring packetized data within the
NIC, including both PCIe transmission layer packets (TLPs)
and Ethernet frames. The segmented memory interface serves
to connect the PCIe DMA interface to the NIC datapath and
to the descriptor and completion handling logic.

The majority of the NIC logic runs in the PCIe user clock
domain, which is nominally 250 MHz for all of the current
design variants. Asynchronous FIFOs are used to interface
with the MACs, which run in the serializer transmit and receive
clock domains as appropriate—156.25 MHz for 10G, 390.625
MHz for 25G, and 322.266 MHz for 100G.

The following sections describe several key functional

blocks within the NIC.

B. Pipelined queue management

Communication of packet data between the Corundum NIC
and the driver is mediated via descriptor and completion
queues. Descriptor queues form the host-to-NIC communi-
cations channel, carrying information about where individual
packets are stored in system memory. Completion queues
form the NIC-to-host communications channel, carrying infor-
mation about completed operations and associated metadata.
The descriptor and completion queues are implemented as
ring buffers that reside in DMA-accessible system memory,
while the NIC hardware maintains the necessary queue state
information. This state information consists of a pointer to the
DMA address of the ring buffer, the size of the ring buffer,
the producer and consumer pointers, and a reference to the
associated completion queue. The required descriptor state for
each queue fits into 128 bits.

The queue management logic for the Corundum NIC must
be able to efficiently store and manage the state for thousands
of queues. This means that the queue state must be completely
stored in block RAM (BRAM) or ultra RAM (URAM) on the
FPGA. Since a 128 bit RAM is required and URAM blocks
are 72x4096, storing the state for 4096 queues requires only 2
URAM instances. Utilizing URAM instances enables scaling
the queue management logic to handle at least 32,768 queues
per interface.

In order to support high throughput, the NIC must be
able to process multiple descriptors in parallel. Therefore,
the queue management logic must track multiple in-progress
operations, reporting updated queue pointers to the driver as
the operations are completed. The state required to track in-
process operations is much smaller than the descriptor state,
and as such it can be stored in flip-flops and distributed RAM.

The NIC design uses two queue manager modules:
queue_manager is used to manage host-to-NIC descriptor
queues, while cpl_queue_manager is used to manage
NIC-to-host completion queues. The modules are similar ex-
cept for a few minor differences in terms of pointer handling,
fill handling, and doorbell/event generation. Because of the
similarities, this section will discuss only the operation of the
queue_manager module.

The BRAM or URAM array used to store the queue state
information requires several cycles of latency for each read
operation, so the queue_manager is built with a pipelined
architecture to facilitate multiple concurrent operations. The
pipeline supports four different operations: register read, reg-
ister write, dequeue/enqueue request, and dequeue/enqueue
commit. Register-access operations over an AXI lite interface
enable the driver to initialize the queue state and provide
pointers to the allocated host memory as well as access the
producer and consumer pointers during normal operation.

C. Transmit scheduler

The default transmit scheduler used in the Corundum
NIC is a simple round-robin scheduler implemented in the

NICHost

Driver

Driver
Data

IF

IF

Port

Port

(a) Traditional NIC, port assignment made
in software

NICHost

DriverData IF
Port

Port

(b) Corundum NIC, port assignment made
in hardware

Fig. 2. NIC port and interface architecture comparison

tx_scheduler_rr module. The scheduler sends com-
mands to the transmit engine to initiate transmit operations
out of the NIC transmit queues. The round-robin scheduler
contains basic queue state for all queues, a FIFO to store
currently-active queues and enforce the round-robin schedule,
and an operation table to track in-process transmit operations.

Similar to the queue management logic, the round-robin
transmit scheduler also stores queue state information in
BRAM or URAM on the FPGA so that it can scale to support
a large number of queues. The transmit scheduler also uses a
processing pipeline to hide the memory access latency.

The transmit scheduler module has four main interfaces:
an AXI lite register interface and three streaming interfaces.
The AXI lite interface permits the driver to change scheduler
parameters and enable/disable queues. The first streaming
interface provides doorbell events from the queue management
logic when the driver enqueues packets for transmission. The
second streaming interface carries transmit commands gener-
ated by the scheduler to the transmit engine. Each command
consists of a queue index to transmit from, along with a
tag for tracking in-process operations. The final streaming
interface returns transmit operation status information back to
the scheduler. The status information informs the scheduler of
the length of the transmitted packet, or if the transmit operation
failed due to an empty or disabled queue.

The transmit scheduler module can be extended or replaced
to implement arbitrary scheduling algorithms. This enables
Corundum to be used as a platform to evaluate experimental
scheduling algorithms, including those proposed in SENIC [3],
Carousel [4], PIEO [16], and Loom [6]. It is also possible to
provide additional inputs to the transmit scheduler module,
including feedback from the receive path, which can be used
to implement new protocols and congestion control techniques
such as NDP [5] and HPCC [8]. Connecting the scheduler to
the PTP hardware clock can be used to support TDMA, which
can be used to implement RotorNet [18], Opera [19], and other
circuit-switched architectures.

D. Ports and interfaces

A unique architectural feature of Corundum is the split
between the port and the network interface so that multiple
ports can be associated with the same interface. Most current
NICs support a single port per interface, as shown in Fig. 2a.
When the network stack enqueues a packet for transmission on
a network interface, the packets are injected into the network
via the network port associated with that interface. However,
in Corundum, multiple ports can be associated with each
interface, so the decision over which port a packet will injected

into the network can be made by hardware at the time of
dequeue, as shown in Fig. 2b.

All ports associated with the same network interface module
share the same set of transmit queues and appear as a single,
unified interface to the operating system. This enables flows
to be migrated between ports or load-balanced across mul-
tiple ports by changing only the transmit scheduler settings
without affecting the rest of the network stack. The dynamic,
scheduler-defined mapping of queues to ports enables research
into new protocols and network architectures, including par-
allel networks such as P-FatTree [17] and optically-switched
networks such as RotorNet [18] and Opera [19].

E. Datapath, and transmit and receive engines

Corundum uses both memory-mapped and streaming inter-
faces in the datapath. AXI stream is used to transfer Ethernet
packet data between the port DMA modules, Ethernet MACs,
and the checksum and hash computation modules. AXI stream
is also used to connect the PCIe hard IP core to the PCIe
AXI lite master and PCIe DMA interface modules. A custom,
segmented memory interface is used to connect the PCIe
DMA interface module, port DMA modules, and descriptor
and completion handling logic to internal scratchpad RAM.

The width of the AXI stream interfaces is determined by
the required bandwidth. The core datapath logic, except the
Ethernet MACs, runs entirely in the 250 MHz PCIe user clock
domain. Therefore, the AXI stream interfaces to the PCIe hard
IP core must match the hard core interface width—256 bits
for PCIe gen 3 x8 and 512 bits for PCIe gen 3 x16. On the
Ethernet side, the interface width matches the MAC interface
width, unless the 250 MHz clock is too slow to provide
sufficient bandwidth. For 10G Ethernet, the MAC interface
is 64 bits at 156.25 MHz, which can be connected to the 250
MHz clock domain at the same width. For 25G Ethernet, the
MAC interface is 64 bits at 390.625 MHz, necessitating a
conversion to 128 bits to provide sufficient bandwidth at 250
MHz. For 100G Ethernet, Corundum uses the Xilinx 100G
hard CMAC cores on the Ultrascale Plus FPGAs. The MAC
interface is 512 bits at 322.266 MHz, which is connected to
the 250 MHz clock domain at 512 bits because it needs to run
at approximately 195 MHz to provide 100 Gbps.

Host FPGA
InterfaceInterface

PortPort
Desc
fetch

PCIe HIP

DMA IF

MAC
+

PHY
SFP

DMA

TX engine

RX engine

Hash

Csum

Csum

DMA

Driver

SFP
MAC

+
PHY

..
.

..
.

Cpl
write

Stream
DMA

R
A

M

Fig. 3. Simplified version of Fig. 1 showing the NIC datapath.

A block diagram of the NIC datapath is shown in Fig. 3,
which is a simplified version of Fig. 1. The PCIe hard IP core
(PCIe HIP) connects the NIC to the host. Two AXI stream
interfaces connect the PCIe DMA interface module to the PCIe
hard IP cores. One interface for read and write requests, and

one interface for read data. The PCIe DMA interface module
is then connected to the descriptor fetch module, completion
write module, port scratchpad RAM modules, and the RX
and TX engines via a set of DMA interface multiplexers.
In the direction towards the DMA interface, the multiplexers
combine DMA transfer commands from multiple sources. In
the opposite direction, they route transfer status responses.
They also manage the segmented memory interfaces for
both reads and writes. The top-level multiplexer combines
descriptor traffic with packet data traffic, giving the descriptor
traffic higher priority. Next, a pair of multiplexers combine
traffic from multiple interface modules. Finally, an additional
multiplexer inside each interface module combines packet data
traffic from multiple port instances.

The transmit and receive engines are responsible for coordi-
nating the operations necessary for transmitting and receiving
packets. The transmit and receive engines can handle multiple
in-progress packets for high throughput. As shown in Fig. 1,
the transmit and receive engines are connected to several
modules in the transmit and receive data path, including the
port DMA modules and hash and checksum offload modules,
as well as the descriptor and completion handling logic and
the timestamping interfaces of the Ethernet MACs.

The transmit engine is responsible for coordinating packet
transmit operations. The transmit engine handles transmit
requests for specific queues from the transmit scheduler. After
low-level processing using the PCIe DMA engine, the packet
will then pass through the transmit checksum module, MAC,
and PHY. Once the packet is sent, the transmit engine will
receive the PTP timestamp from the MAC, build a completion
record, and pass it to the completion write module.

Similar to the transmit engine, the receive engine is re-
sponsible for coordinating packet receive operations. Incoming
packets pass through the PHY and MAC. After low-level
processing that includes hashing and timestamping, the receive
engine will issue one or more write requests to the PCIe DMA
engine to write the packet data out into host memory. When
the writes complete, the receive engine will build a completion
record and pass it to the completion write module.

The descriptor read and completion write modules are
similar in operation to the transmit and receive engines.
These modules handle descriptor/completion read/write re-
quests from the transmit and receive engines, issue enqueue/d-
equeue requests to the queue managers to obtain the queue
element addresses in host memory, and then issue requests to
the PCIe DMA interface to transfer the data. The completion
write module is also responsible for handling events from the
transmit and receive completion queues by enqueuing them in
the proper event queue and writing out the event record.

F. Segmented memory interface

For high performance DMA over PCIe, Corundum uses a
custom segmented memory interface. The interface is split
into segments of maximum 128 bits, and the overall width
is double that of the AXI stream interface from the PCIe
hard IP core. For example, a design that uses PCIe gen

3 x16 with a 512-bit AXI stream interface from the PCIe
hard core would use a 1024-bit segmented interface, split
into 8 segments of 128 bits each. This interface provides
an improved “impedance match” over using a single AXI
interface, enabling higher PCIe link utilization by eliminating
backpressure due alignment in the DMA engine and arbitration
in the interconnect logic. Specifically, the interface guarantees
that the DMA interface can perform a full-width, unaligned
read or write on every clock cycle. Additionally, the use of
simple dual port RAMs, dedicated to traffic moving in a single
direction, eliminates contention between the read and write
paths.

Each segment operates similar to AXI lite, except with
three interfaces instead of five. One channel provides the write
address and data, one channel provides the read address, and
one channel provides the read data. Unlike AXI, bursts and
reordering are not supported, simplifying the interface logic.
Interconnect components (multiplexers) are responsible for
preserving the ordering of operations, even when accessing
multiple RAMs. The segments operate completely indepen-
dently of each other with separate flow control connections and
separate instances of interconnect ordering logic. In addition,
operations are routed based on a separate select signal and not
by address decoding. This feature eliminates the need to assign
addresses and enables the use of parametrizable interconnect
components that appropriately route operations with minimal
configuration.

Byte addresses are mapped onto segmented interface ad-
dresses with the lowest-order address bits determining the byte
lane in a segment, the next bits selecting the segment, and
the highest-order bits determining the word address for that
segment. For example, in a 1024-bit segmented interface, split
into 8 segments of 128 bits, the lowest 4 address bits would
determine the byte lane in a segment, the next 3 bits would
determine the segment. The remainder of the bits determine
the address bus for that segment.

G. Device Driver

The Corundum NIC is connected to the Linux kernel net-
working stack with a kernel module. The module is responsible
for initializing the NIC, registering kernel interfaces, allocating
DMA-accessible buffers for descriptor and completion queues,
handling device interrupts, and passing network traffic between
the kernel and the NIC.

The NIC uses register space to expose parameters including
the number of interfaces, number of ports, number of queues,
number of schedulers, maximum transport unit (MTU) size,
and presence of PTP timestamping and offload support. The
driver reads these registers during initialization so it can
configure itself and register kernel interfaces to match the NIC
design configuration. This auto-detection capability means that
the driver and NIC are loosely coupled; the driver generally
does not need to be modified with respect to the core datapath
when used across different FPGA boards, different Corundum
design variants, and different parameter settings.

H. Simulation Framework

An extensive open-source, Python-based simulation frame-
work is included to evaluate the complete design. The frame-
work is built using the Python library MyHDL and includes
simulation models of the PCI express system infrastructure,
PCI express hard IP core, NIC driver, and Ethernet interfaces.
The simulation framework facilitates debugging the complete
NIC design by providing visibility into the state of the entire
system.

The core of the PCIe simulation framework consists of
about 4,500 lines of Python and includes transaction-layer
models of PCIe infrastructure components including root
complex, functions, endpoints, and switches as well as high-
level functionality including configuration space, capabilities,
bus enumeration, root complex memory allocation, interrupts,
and other functions. Additional modules, consisting of another
4,000 lines of Python, provide models of the FPGA PCIe
hard IP cores, exchanging transaction-layer traffic with the
simulated PCIe infrastructure and driving signals that can be
connected to a cosimulated Verilog design.

Simulating Corundum requires a few lines of code to
instantiate and connect all of the components. Listing 1 shows
an abbreviated testbench to send and receive packets of various
sizes using the simulation framework, with the Verilog design
cosimulated in Icarus Verilog. The testbench instantiates sim-
ulation models for the Ethernet interface endpoints, PCIe root
complex, and driver, and connects these to the cosimulated
design. Then, it initializes the PCIe infrastructure, initializes
the driver model, and sends, receives, and verifies several test
packets of various lengths.

III. RESULTS

The 100G variant of the Corundum NIC was evaluated on an
Alpha Data ADM-PCIE-9V3 board, installed in a Dell R540
server (dual Xeon 6138), connected to a commercial state-
of-the-art NIC (Mellanox ConnectX-5) in an identical server
with a QSFP28 direct attach copper cable. Two more Mellanox
ConnectX-5 NICs installed in the same machines were also
evaluated for comparison. Up to eight instances of iperf3 were
used to saturate the link.

To compare the performance of Corundum with the Mel-
lanox ConnectX-5, both NICs were initially configured with a
maximum transmission unit (MTU) of 9000 bytes. For this
configuration, Corundum can separately achieve 95.5 Gbps
RX and 94.4 Gbps TX (Fig. 4a). Under the same condi-
tions, the Mellanox ConnectX-5 NIC achieves 97.8 Gbps
for both RX and TX. When running additional instances of
iperf to simultaneously saturate the link in both directions,
the performance of Corundum degrades to 65.7 Gpbs RX
and 85.9 Gbps TX (Fig. 4b). For the existing testbed, the
performance of the Mellanox NIC also degraded to 83.4 Gbps
for both RX and TX. The degradation of both Corundum and
the ConnectX-5 in full-duplex mode suggests that the software
driver may be a significant contributor to the reduction in
performance. Specifically, the current version of driver only
supports the Linux kernel networking stack. A reference

from myhdl import *
import pcie, pcie_us, pcie_usp, axis_ep
signals
clk_250mhz = Signal(bool(0))
etc.
sources and sinks
qsfp_0_source = axis_ep.AXIStreamSource()
qsfp_0_source_logic = qsfp_0_source.create_logic(

qsfp_0_rx_clk,
etc.

)
etc.
set up PCIe infrastructure
rc = pcie.RootComplex()
create driver instance
driver = mqnic.Driver(rc)
create PCIe hard IP core instance
dev = pcie_usp.UltrascalePlusPCIe()
rc.make_port().connect(dev)
pcie_logic = dev.create_logic(

m_axis_cq_tdata=s_axis_cq_tdata,
etc.

)
connect to Verilog design
dut = Cosimulation(

"vvp -m myhdl testbench.vvp -lxt2",
clk_250mhz=user_clk,
etc.

)

@instance
def check():

initialization
yield rc.enumerate()
yield from driver.init_dev(

dev.functions[0].get_id())
yield from driver.interfaces[0].open()
test packets of various lengths
for k in range(64, 1515):

data = bytearray([x%256 for x in range(k)])
send a packet
yield from driver.interfaces[0]

.start_xmit(data, 0)
yield qsfp_0_sink.wait()
pkt = qsfp_0_sink.recv()
assert pkt.data == data
receive a packet
qsfp_0_source.send(pkt)
yield driver.interfaces[0].wait()
pkt = driver.interfaces[0].recv()
assert pkt.data == data

Listing 1. Abbreviated NIC testbench. Includes setting up PCIe, Ethernet
interface, and driver models, initializing the simulated PCIe bus and driver,
and sending and receiving test packets. Most signals removed for brevity.

design that supports a kernel-bypass framework such as DPDK
is an objective of future work. This design should improve the
performance for full-duplex mode and can be customized for
specific applications.

Figures 4c and 4d compare the performance for an MTU of
1500 bytes. For this case, Corundum can separately achieve
75.0 Gbps RX and 72.2 Gbps TX (Fig. 4c) and simultaneously
achieve 53.0 Gbps RX and 57.6 Gbps TX (Fig. 4d). The
performance difference for Corundum between TX and RX
seen in Fig. 4c as the number of iperf instances increases is
caused by a limitation on the number of in-process transmit
packets coupled with PCIe round-trip delay. This was verified

2 4 6 8
iperf processes

0

20

40

60

80

100

Da
ta

 ra
te

 (G
bp

s)

Corundum TX
Corundum RX
ConnectX-5 TX
ConnectX-5 RX

(a) 9 kB MTU, separate RX and TX.

2 4 6 8
iperf processes

0

20

40

60

80

100

Da
ta

 ra
te

 (G
bp

s)

Corundum TX
Corundum RX
ConnectX-5 TX
ConnectX-5 RX

(b) 9 kB MTU, simultaneous RX and TX.

2 4 6 8
iperf processes

0

20

40

60

80

100

Da
ta

 ra
te

 (G
bp

s)

Corundum TX
Corundum RX
ConnectX-5 TX
ConnectX-5 RX

(c) 1.5 kB MTU, separate RX and TX.

2 4 6 8
iperf processes

0

20

40

60

80

100

Da
ta

 ra
te

 (G
bp

s)

Corundum TX
Corundum RX
ConnectX-5 TX
ConnectX-5 RX

(d) 1.5 kB MTU, simultaneous RX and
TX.

Fig. 4. Comparison of the TCP throughput for Corundum and a Mellanox
ConnectX-5.

by increasing the number of in-process transmit operations
from 8 to 16. This improved the rate from 65.6 Gbps RX
and 45.7 Gbps TX to the rates 75.0 Gbps RX and 72.2 Gbps
TX shown in Fig. 4c. For comparison, under the same condi-
tions, the Mellanox ConnectX-5 NIC can separately achieve
93.4 Gbps for RX and 86.5 Gbps TX and simultaneously
achieve 82.7 Gbps RX and 62.0 Gbps TX.

To test the performance of PTP timestamping, two Corun-
dum NICs in 10G mode were connected to an Arista 40G
packet switch operating as a PTP boundary clock. The NICs
were configured to output a fixed frequency signal derived
from PTP time, which was captured by an oscilloscope. When
Corundum is implemented with PTP timestamping enabled,
the hardware clocks can be synchronized with linuxptp to
better than 50 ns. The time synchronization performance is
unchanged when the link is saturated.

IV. CASE-STUDY: TIME-DIVISION MULTIPLE ACCESS
(TDMA)

Precise network admission control is a critical networking
functionality at high line rates. Corundum provides thousands
of transmit queues that can be used to separate and control
transmit data on a fine time scale synchronized across mul-
tiple end hosts. This functionality provides a unique toolbox
that can be used develop new and powerful NIC functions.
Determining what network functions to implement and the
impact these functions have on network performance is an
active research area [3]–[5], [16].

TABLE I
RESOURCE UTILIZATION

Board FPGA PCIe IF TXQ MTU MAC Speed LUT FF BRAM URAM
ADM-PCIE-9V3 XCVU3P 3 x16 2x1 8K 2 K 10 G 10 G 69.4 K (18%) 71.7 K (9%) 252 (33%) 20 (6%)
ADM-PCIE-9V3 XCVU3P 3 x16 2x1 8K 2 K 25 G 25 G 66.7 K (17%) 71.7 K (9%) 239 (33%) 20 (6%)
ADM-PCIE-9V3 XCVU3P 3 x16 2x1 8K 16 K 100 G 78.7 G 61.7 K (16%) 74.1 K (9%) 331 (33%) 20 (6%)

ExaNIC X10 XCKU035 3 x8 2x1 1K 2 K 10 G 10 G 40.7 K (20%) 45.5 K (11%) 131 (24%) -
ExaNIC X25 XCKU3P 3 x8 2x1 8K 2 K 10 G 10 G 43.9 K (27%) 51.8 K (16%) 132 (37%) 20 (42%)
ExaNIC X25 XCKU3P 3 x8 2x1 8K 2 K 25 G 25 G 41.3 K (25%) 51.0 K (16%) 127 (35%) 20 (42%)

NetFPGA SUME XC7V690T 3 x8 2x1 512 2 K 10 G 10 G 43.0 K (10%) 50.8 K (6%) 133 (9%) -
VCU108 XCVU095 3 x8 1x1 2K 2 K 10 G 10 G 28.2 K (5%) 26.0 K (2%) 107 (6%) -
VCU118 XCVU9P 3 x16 2x1 8K 2 K 10 G 10 G 70.0 K (6%) 72.5 K (3%) 252 (12%) 20 (2%)
VCU118 XCVU9P 3 x16 2x1 8K 16 K 100 G 78.7 G 62.4 K (5%) 76.8 K (3%) 331 (15%) 20 (2%)
VCU1525 XCVU9P 3 x16 2x1 8K 2 K 10 G 10 G 69.4 K (6%) 71.7 K (3%) 252 (12%) 20 (2%)
VCU1525 XCVU9P 3 x16 2x1 8K 16 K 100 G 78.7 G 62.2 K (5%) 76.1 K (3%) 331 (15%) 20 (2%)

To demonstrate how Corundum can be used for precision
transmission control, we implemented a simple reference
design for TDMA with a fixed schedule. Starting with this
basic design and the modular structure of Corundum, custom
schedulers for novel networking protocols can be implemented
that are minimally intrusive to the overall architecture.

The fixed TDMA schedule can be synchronized across
multiple hosts via IEEE 1588 PTP. TDMA is implemented
by enabling and disabling queues in the transmit scheduler ac-
cording to PTP time, under the control of the TDMA scheduler
control module. Queue enable and disable commands are gen-
erated in the TDMA scheduler control module and sent to the
transmit scheduler at the beginning and end of each timeslot
of the TDMA schedule. The TDMA scheduler operates under
the assumption that the timeslots are sufficiently long so that
the TDMA scheduler control module can prepare for the next
timeslot during the current timeslot. In addition, a relatively
small number of queues must be active during each timeslot so
the skew between the first and last queue enabled or disabled
is small.

The TDMA scheduler control module runs in the 250 MHz
PCIe user clock domain. As a result, it takes 4 ns per queue to
iterate over each transmit queue to prepare for the next timeslot
(about 32.8 us total for 8,192 transmit queues). Similarly, it
takes 4 ns to generate each enable or disable command to send
to the transmit scheduler module.

A. TDMA performance

The 100G TDMA variant of the Corundum NIC with 256
transmit queues was evaluated on an Alpha Data ADM-PCIE-
9V3 board, installed in a Dell R540 server (dual Xeon 6138),
connected to a Mellanox ConnectX-5 NIC. Eight instances of
iperf3 were used to saturate the link, and both NICs were
configured with an MTU of 9 kB. With TDMA disabled, the
NIC runs at 94.0 Gbps. The TDMA scheduler was configured
run a schedule with period 200 μs containing two timeslots
of 100 μs, enabling all transmit queues in the first timeslot
and disabling them in the second. Accounting for a 8 μs
interval for the 11 packets in the transmit datapath (11 ×
0.72 μs per packet) at 100 Gbps plus 1 μs to disable all 256
queues, Corundum could control the data leaving the NIC with
a precision of two packet lengths or 1.4 μs.

An additional test was run at 10 Gbps line rate with an
MTU of 1500 bytes using a schedule with a period of 200 μs.
This period was partitioned into two timeslots of 100 μs.
Accounting for a 38 μs interval for the 32 packets in the
transmit datapath (32 × 1.2 μs per packet) at 10 Gbps plus
1 μs to disable all 256 queues, Corundum could control the
data leaving the NIC with a precision of two packet lengths
or 2.4 μs.

V. CONCLUSION

In this paper, we presented Corundum, an open-source,
high-performance, FPGA-based NIC. The measured perfor-
mance of the initial design provides realistic line rates suffi-
cient to develop and test new networking applications. Existing
and planned open-source reference designs enable customiza-
tion and further performance improvements. These features
lead to a powerful prototyping platform for network research
and development, including NIC-based schedulers such as
SENIC [3], Carousel [4], PIEO [16], and Loom [6], new
protocols and congestion control techniques such as NDP [5]
and HPCC [8]. Corundum also enables new parallel network
architectures, such as P-FatTree [17], RotorNet [18], and
Opera [19]. Optimizing the design to improve performance for
smaller packet sizes as well as customizing the design for new
networking protocols based on precise packet transmission are
objectives of ongoing work.

REFERENCES

[1] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung,
H. K. Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier,
N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel,
T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Srivastava,
A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A.
Maltz, and A. Greenberg, “Azure accelerated networking: SmartNICs
in the public cloud,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). Renton, WA:
USENIX Association, Apr. 2018, pp. 51–66. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/firestone

[2] B. Stephens, A. Akella, and M. M. Swift, “Your programmable NIC
should be a programmable switch,” in Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, ser. HotNets ’18. New York,

NY, USA: Association for Computing Machinery, 2018, p. 36–42.
[Online]. Available: https://doi.org/10.1145/3286062.3286068

[3] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani, G. Porter,
and A. Vahdat, “SENIC: Scalable NIC for end-host rate limiting,”
in 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14). Seattle, WA: USENIX Association, 2014,
pp. 475–488. [Online]. Available: https://www.usenix.org/conference/
nsdi14/technical-sessions/presentation/radhakrishnan

[4] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam, C. Contavalli,
and A. Vahdat, “Carousel: Scalable traffic shaping at end hosts,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 404–417. [Online].
Available: https://doi.org/10.1145/3098822.3098852

[5] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore,
G. Antichi, and M. Wójcik, “Re-architecting datacenter networks
and stacks for low latency and high performance,” in Proceedings
of the Conference of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 29–42. [Online].
Available: https://doi.org/10.1145/3098822.3098825

[6] B. Stephens, A. Akella, and M. Swift, “Loom: Flexible and efficient
NIC packet scheduling,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). Boston, MA:
USENIX Association, Feb. 2019, pp. 33–46. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/stephens

[7] “Data plane development kit,” https://www.dpdk.org/.
[8] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,

M. Zhang, F. Kelly, M. Alizadeh, and et al., “HPCC: High precision
congestion control,” in Proceedings of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 44–58. [Online].
Available: https://doi.org/10.1145/3341302.3342085

[9] “Exablaze,” https://exablaze.com/.
[10] “Netcope technologies,” https://www.netcope.com/en.
[11] “Atomic rules,” http://www.atomicrules.com/.
[12] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,

“NetFPGA SUME: Toward 100 Gbps as research commodity,” IEEE
Micro, vol. 34, no. 5, pp. 32–41, Sep. 2014.

[13] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, and et al., “A
cloud-scale acceleration architecture,” in The 49th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-49. IEEE
Press, 2016.

[14] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani,
V. Bruschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda,
F. Huici, and G. Siracusano, “FlowBlaze: Stateful packet processing
in hardware,” in 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). Boston, MA: USENIX
Association, Feb. 2019, pp. 531–548. [Online]. Available: https:
//www.usenix.org/conference/nsdi19/presentation/pontarelli

[15] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa, K. S. Lee, H. Wang,
R. Agarwal, and H. Weatherspoon, “Shoal: A network architecture
for disaggregated racks,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). Boston, MA:
USENIX Association, Feb. 2019, pp. 255–270. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/shrivastav

[16] V. Shrivastav, “Fast, scalable, and programmable packet scheduler in
hardware,” in Proceedings of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 367–379. [Online].
Available: https://doi.org/10.1145/3341302.3342090

[17] W. M. Mellette, A. C. Snoeren, and G. Porter, “P-FatTree: A
multi-channel datacenter network topology,” in Proceedings of the
15th ACM Workshop on Hot Topics in Networks, ser. HotNets ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
78–84. [Online]. Available: https://doi.org/10.1145/3005745.3005746

[18] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.
Snoeren, and G. Porter, “RotorNet: A scalable, low-complexity, optical
datacenter network,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
267–280. [Online]. Available: https://doi.org/10.1145/3098822.3098838

[19] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren,
and G. Porter, “Expanding across time to deliver bandwidth
efficiency and low latency,” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20). Santa
Clara, CA: USENIX Association, Feb. 2020. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/mellette

